Substituted s-Triazoles and Related Compounds

Harky I. Yahe and Jomern d. Phata

Received Septrmbar - 1965

Abstract

i-(p-Aminophenyl)-s-iriazole-3-thiol, administered intraperitometlly into the rat, prodnced diuresis and natriuresis. The synthesis and subsequent screening of a mmber of related derivai ive made possible a correlation of structure with activity.

'The diaretic and natriuretic activity seen in the rat following the intraperitoneal achminstration of $\overline{5}-(p-$ aminophenyl)- s-triazole-3-thiol (9) indicated that a new chas of diuretic compounds had been found, and a number of related compounds were synthesized to exploit this lead. Examples of the preparative methods cmployed are shown in Chart I - V.

Structure-Activity Relationships.- The most potent compound was 9; elimination of the 3-SH group (2) or the p-amino gronp (8) resulted in complete lose of dimetic and natriureticactivity; conversion of the $3-\mathrm{SH}$ groaj, in 9 to $\mathrm{SCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ or $-\mathrm{SCH}_{3}$ also rewated in completo low of activity: and, finally, replacement of the $3-\mathrm{SH}$ group in $9 \mathrm{hy}-\mathrm{NH}_{2}$ and acetyhation of the $-\mathrm{-}$

Ghatr I

CH:MR1 II
$\mathrm{CH}_{3} \mathrm{CONH} \longrightarrow \mathrm{CONHNHC}(=\mathrm{NH}) \mathrm{NH}_{2} \xrightarrow{\mathrm{NaOH}}$

The triazoles prepared are listed in Table I, along with their physical constants, analyses, and diuretic and matriuretic adivitien: a manber of intermediate 1 -aroy-3-thiosemicarbazides are listed in Table II, along with their physical constants and analyser.
$\left(p-\mathrm{H}_{2} \mathrm{~N}^{(} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ group) (32) gave an inactive componad. Weakly active componde wero obtained from 9 by (a) conversion of the ${ }^{2}-\mathrm{SH}$ gronp to $-\mathrm{SO}_{2} \mathrm{NH}_{2}(\mathbf{2 6}$) or (b) rep pacement of the $-5\left(p-\mathrm{H}_{2} \mathrm{~T}^{-} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ group by t-pyridyt

 fai 18 lar. hefore pach test, wore delpived of both food and water throngh the experinent. It porotine they received intraperitoneally the test componal lissolved in 0.9% salint solution or suspended in $0.25 \%_{0}^{\circ}$ agar solution, depending upon the solutitits of the compound, along with an oral hydrating dose of 0.9% saline for a total flail intake of $2 \overline{5} \mathrm{ml} . / \mathrm{kg}$. Fiach compound was administered at the l.1) level, roughly approximated in several rats. Tho four rats receiving tho emporind were placed in metabolism cages, froto Which the spontanemuly voided urine of all was collected 5 and 24 lir. later. thignot- of earli specitact wote analyed for Na be means of a Process and

 respurctively

Chart III

Chart IV

Chart V

(19) (the 2-pyridyl, 3-pyridyl, and 4-quinolyl compounds 17, 18, and 21, respectively, were inactive). The substitution in 9 of the $5-\left(p-\mathrm{H}_{2} \Lambda \mathrm{C}_{6} \mathrm{H}_{4}\right)$ group by 2pyrazinyl (22) gave a weakly active diuretic but an ineffective natriuretic agent. Substitution of the $\overline{5}-$ $\left(p-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)$ group of 9 by $p-\mathrm{HOC}_{6} \mathrm{H}_{4}(\mathbf{1 0})$, $p-\mathrm{H}_{2} \mathrm{NSO}_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{1 1})$, or $p-\mathrm{H}_{2} \mathrm{NCO}{ }^{-} \mathrm{HC}_{6} \mathrm{H}_{4}(\mathbf{1 2})$ resulted in a decrease or complete loss of activity. Introduction of an o-hydroxy group into 9 gave 16 , possessing good diuretic but no natriuretic properties. The dose of 29 required to achieve good diuretic and natriuretic activity was impractical. All other structural modifications of 9 gave, in general, inactive compounds.

Experimental Section

3-Phenyl-s-triazole (1). Method A.-A mixture of 9.0 g . (0.11 mole) of $8,100 \mathrm{ml}$. of absolute ethanol, and 15 g . of Davison sponge nickel (filtered with suction but still damp) was refluxed for 3 hr . and filtered hot. The filtrate, concentrated from the steam bath, gave an oil which crystallized spontaneously; recrystallization from equal parts of toluene-Skellysolve E gave 5.0 g , of 1.
p-(s-Triazol-5-yl)phenylurea (6). Method B.-To 6.0 g . (0.031 mole) of 2 in 40 ml . of $1 N^{-}$aqueous HCl was added 3.4 g . (0.042 mole) of potassiun cyanate. Reaction was prompt and a solid
separated. This was filtered and recrystallized from propanol to give 6.

4-(s-Triazol-5-yl)succinanilic Acid (7). Method C.-A mixture of 8.0 g . (0.042 mole) of $2,5.0 \mathrm{~g}$. (0.05 mole) of succinic anhydride, and 600 ml . of anhydrous acetonitrile was stirred and refluxed for 18 hr . and cooled; the solid was filtered and dried to give 11.0 g . of material, m.p. $248-250^{\circ}$. Recrystallization from 95% ethanol gave 4.0 g . of 7 .

5-Phenyl-s-triazole-3-thiol (8). Method D.-A solution of 70.0 g . (0.36 mole) of 1-benzoyl-3-thiosemicarbazide in 360 ml . of 5% aqueous NaOH was heated for 4 hr . on the steam bath, cooled, and acidified with glacial acetic acid. The solid which separated was filtered and recrystallized from water to give 47.8 g . of 8 .

5-(p-Aminophenyl)-s-thiazole-3-thiol (9). Method E.-A mixture of 26.0 g . (0.19 mole) of 1 -(p-nitrobenzoyl $)$-3-thiosenicarbazide and 175 mll . of commercial 20% aqueous amnonium sulfide solution was heated on the steam bath for 1.5 hr . in an open flask maintaining a constant volume by the addition of water. The hot solution was filtered rapidly from the precipitated sulfur and the filtrate was cooled. The solid which separated was filtered and recrystallized from water to give 14.7 g . of $9 .{ }^{2}$
p-(3-Mercapto-s-triazol-5-yl)phenylurea (12). Method F.-To a solution of $6.7 \mathrm{~g} .(0.035 \mathrm{~mole})$ of 2 in 3500 ml . of water at 70° was added 4.34 g . (0.043 mole) of nitrourea; the mixture was kept 10 min . at 80°, heated to boiling, allowed to cool, and filtered. The filtrate, when concentrated in vacuo to about 100 ml . and cooled, gave 5.0 g . of solid. Recrystallization from water gave 4.0 g . of 12.

3-Ethyl-1-[p-(3-mercapto-s-triazol-5-yl)phenyl]urea (13). Method G.-A mixture of 5.8 g . (0.03 mole) of 2, 1000 ml . of anhydrous acetonitrile, and 4.4 g . (0.06 mole) of ethyl isocyanate was refluxed for 16 hr . and cooled, and the solid was filtered to give 7.5 g . of crude 13 , m.p. $>310^{\circ}$. Recrystallization from 95% ethanol gave 6.3 g . of 13 .

3-(Methylthio)-5-(4-pyridyl)-s-triazole (24). Method H.-To 53.4 g . (0.3 mole) of 19 and 20.0 g . (0.3 mole) of $85 \% \mathrm{KOH}$ in 500 ml . of methanol was added 43.0 g . (0.3 mole) of methyl iodide, dropwise. Subsequently, the mixture was refluxed gently for 3 hr. and concentrated to dryness on the steam bath, and 150 ml . of water was added. A clear solution formed momentarily and then a solid separated; this was filtered and recrystallized fronı water to give 27.6 g . of 24 .

5-(p-Aminophenyl)-s-triazol-3-ylmercaptoacetic Acid (25), Method I.-A mixture of 10.0 g . (0.056 mole) of $9,5.3 \mathrm{~g}$. (0.056 mole) of chloroacetic acid, and 4.5 g . (0.12 mole) of NaOH was refluxed for 2 hr ., cooled, and acidified with acetic acid. The solid which crystallized slowly from the acid solution was filtered and recrystallized from water to give 11.5 g . of $\mathbf{2 5}$.

5-(p-Aminophenyl)-s-triazole-3-sulfonamide (26). Method J. -5-(p-Nitrophenyl)-s-triazole-3-thiol was prepared by method D in 73% yield, m.p. $253-255^{\circ}$ dec., after recrystallization from water (Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 43.24 ; \mathrm{H}, 2.72 ; \mathrm{N}$, 25.21. Found: C, 43.08; H, 2.73; N, 24.87.). A stirred suspension of 25.0 g . (0.113 mole) of the p-nitrophenyl derivative, in 400 ml . of $2 N^{\prime}$ aqueous HCl was maintained at $5-8^{\circ}$ while diffused with chlorine gas for 2 hr . The sulfonyl chloride was filtered and added gradually with stirring to 400 ml . of concentrated aqueous NH_{3}, and the mixture was kept for 18 hr . at room temperature. The trace of solid was filtered and the filtrate was acidified with glacial acetic acid. After filtration and air drying, the solid weighed 21.0 g., m.p. $216-218^{\circ}$ dec. Recrystallization from 50% ethanol gave 12.0 g . (40% yield) of $\bar{\sigma}-(p$ -nitrophenyl)-s-triazole-3-sulfonamide, m.p. 244-246 ${ }^{\circ}$ dec. (Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 3 \overline{5} .68 ; \mathrm{H}, 2.62 ; \mathrm{N}, 26.01$. Found: C, $35.43 ; \mathrm{H}, 2.55 ; \mathrm{N}, 25.3 \overline{5}$.). The product from the previous step (12.0 g .) was dissolved in 200 ml . of warm $95 \sigma_{c}$ ethanol, 2 g . of 5% palladium on charcoal in 50 ml . of 95% ethanol was added, and the mixture was hydrogenated under $3.5 \mathrm{~kg} . / \mathrm{cm} .{ }^{2}$ for 0.25 hr . The catalyst was filtered, the filtrate was concentrated to dryness, and the residue was recrystallized from water to give 7.0 g . of 26.

5-(4-Acetamidophenyl)-3-amino-s-triazole Hydrate (32).

[^0]Table I
Substiteted s-Thazoles and Requied Compondes

${ }^{a}$ Toluene-Skellysolve. ${ }^{b}$ E. Hoggarth [J. Chem. Soc., 1160 (1949)] reported m.p. 121°. © Water. ${ }^{\text {a }}$ Recrystallization from xylone gave the anhydrous compound, m.p. $196-197^{\circ}$. Anal. Calcol. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}$: $\mathrm{C}, 59.88 ; \mathrm{H}, 5.04 ; \mathrm{N}, 34.98$. Found: C, 60.04; IT, $\overline{5} .03: \mathrm{N}, 34.53$. The anhydrous compound in absolute ethanol with ethereal HCl gave a dihydrochloride, m.p. $258-260^{\circ}$, after recrystallization from absolute ethanol-ether. Anal. Caled. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4} \cdot 2 \mathrm{HCl}: \mathrm{Cl}, 30.41 ; \mathrm{N}, 24.02$. Found: $\mathrm{Cl}, 30.37 ; \mathrm{N}, 24.25$. - Xylene. Water. Anal. Caled.: neut. equiv., 146. Found: nent. equiv. $\left(\mathrm{HClO}_{4}\right), 139$. ${ }^{h}$ Anal. Calcd.: $\mathrm{S}, 14.30$. Fonnd: s, 13.99. ${ }^{\quad 1}$-Propanol. ${ }^{i} 95 \%$ ethanol. ${ }^{k}$ E. Hoggartl1 ${ }^{b}$ prepared this compound by a different procedure and reported m.p. 255°. ${ }^{\prime}$ Anal. Calcd.: S, 15.25. Found: S, 15.66. ${ }^{m}$ Water- N, N-dimethylformamide. ${ }^{n}$ Anal. Calcd.: S, 12.18. Found: S, 12.02 . $" 5 \%$ aqueous HCl. ${ }^{p}$ The base melted at $278-279^{\circ}$ dec. after recrystallization from water. Anal. Calcd. C, 47.18; $\mathrm{H}, 3.39 ; \mathrm{N}$, 31.44. Found: C, $47.21 ; \mathrm{H}, 3.62 ; \mathrm{N}, 31.30$. q Recrystallization from 5% aqueous HCl gave the hydrochloride hemihydrate, m.p.

Method K.-To a stirred suspension of 12.6 g . (0.11 mole) of aminoguanidine hydrochloride in 100 ml . of pyridine, at 0°, wals added gradually 22.5 g . (0.011 mole) of p-acetamidoberzoy chloride. The solution was stirred for 1.5 hr . at ($)^{\circ}$ when a solid separated; cooling and stirring was discontinued, the mixture was kept for 18 hr . at room tenperature and diluted with 300
ml. of water, and the solution was nentralized with powdered NaHCO_{3}. Concentration of the neutral mixture to about. 100 mil. in cacuo gave 24.0 g . of solid, m.p. $262-265^{\circ}$ dec. An analytical sample of p-acetamidobenzamidoguanidine was obtained by recrystallization from water and melted at $270-271^{\circ}$ der. (Anal. Caled. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{\mathrm{i}} \mathrm{O}_{2}: \mathrm{N}, 29.77$. Found: $\mathrm{N}, 29.44$). Thr

C	H	-
		28.95
56.80	5.36	33.11
57.51	4.14	38.34
57.51	4.14	$38.34{ }^{\text {a }}$
		24.99^{k}
53.20	4.47	34.47
55.38	4.65	21.63
54.21	3.98	23.72
		$26.65^{\text {c }}$
45.47	4.30	15.18
37.49	3.16	21.86
45.94	3.86	29.77
50.17	4.95	$\ldots{ }^{n}$
49.31	4.14	19.17
44.60	4.12	15.16
46.17	3.88	26.90
47.18	3.39	31.44
39.15	3.29	
47.18	3.39	31.44
39.15	3.29	
57.88	3.53	24.55
40.21	2.81	39.08
31.20	4.36	27.76
49.98	4.20	29.15
48.00	4.03	22.40
40.19	3.80	29.30
42.57	4.54	27.08
42.47	3.86	20.64
		$31.10^{\text {s }}$
60.00	5.04	
43.36	3.64	33.72
51.03	$5 . \overline{5} 7$	29.77
49.06	4.68	31.21
36.73	6.16	
43.50	3.65	36.24

C	H	N
		28.93
56.96	5.15	32.98
57.50	3.88	38.38
57.51	4.04	38.29
		24.93
53.03	4.39	34.67
55.62	4.83	21.94
54.39	3.86	23.83
		26.36
45.77	4.54	15.06
37.10	3.08	22.02
46.11	4.12	30.05
50.24	5.08	
49.21	4.15	18.91
44.88	4.16	15.27
46.41	4.07	27.04
47.39	3.58	31.39
38.82	3.77	
47.18	3.36	31.18
39.11	3.06	
58.05	3.29	24.31
39.96	2.96	38.81
31.49	4.46	27.50
49.58	3.95	29.49
47.91	4.13	22.34
40.01	3.67	29.04
42.78	4.35	26.79
42.22	3.91	20.73
		31.15
60.37	4.78	
43.19	3.54	33.64
50.88	5.61	29.45
48.85	4.50	30.80
36.33	6.24	
43.57	3.45	36.7

$\begin{gathered} \mathrm{LD}_{5_{.}} \\ \mathrm{mg} . / \mathrm{kg} . \end{gathered}$	Renal activity of LD_{s} dose in rats i			
	Lrine. $\%$	$\begin{gathered} -\mathrm{a}, \\ \% \\ \hline \end{gathered}$	U'rine, $\%$	Na. $\%$
252	0	0	15	23
725	0	0	35	75
340	8	37	4	24
295	0	0	0	52
130
88	. .	\ldots	. .	\ldots
1200	\cdots	\ldots	\ldots	
790	0	0	0	0
15	116	. . .	295	81
38	0		0	
430	¢ 6	119	30	71
198	0	0	88	138
480	0	0	6	15
2150	0	0	0	0
1260	0	0	0	0
790	0	0	223	0
304	0	0	0	0
120	0	0	0	0
156	17	62	66	138
184	0	0	0	0
560	0	0	0	0
780	53	0	154	0
>1200	0	0	0	0
156	0	0	0	0
>3000	0	0	0	0
1200	68	41	67	0
238	0	0	11	0
>2400	0	0	0	0
1200	0	0	115	282
150		\cdots	.	. \cdot
408	0	0	0	0
1260	0	0	0	0
256	0	0	0	0
>2400	0	0	0	52
370	6	0	0	0

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{5}$	54.84	5.18	\ldots	54.99	5.05	\ldots	1000	0	0	38	61
$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$	\ldots	\ldots	20.88	\ldots	\ldots	21.06	235	25	44	57	36
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$	55.55	3.72	25.91	55.78	3.52	25.44	1750	0	0	0	0
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}$	60.49	4.19	35.27	60.29	4.08	34.91	1200	0	0	0	0
$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{7} \mathrm{O} \cdot 2 \mathrm{HCl}$	\ldots		\ldots	$23.55^{c c}$	\ldots	\ldots	23.82	2400	\ldots	\ldots	\ldots

 Heidenreich [Ber., 26, 2599 (1893)] was used; they reported m.p. 148°. ${ }^{w}$ Ethyl acetate. ${ }^{x}$ The procedure of H. Bode-König, W. Siefken, and H. A. Offe [ibid., 87, 825 (1954)] was used; they report m.p. 210 dec., solidifying and remelting at $248-252^{\circ}$ dec. "The procedure of J. P. Turner and J. Walker [J. Chem. Soc., 4542 (1952)] was used; they report m.p. 174-175 ${ }^{\circ}$. ${ }^{\text {a }}$ Ethylene dichloride. ${ }^{a a}$ The procedure of A. Pinner and N. Caro [Ber., 28, 465 (1895)] was used; they report m.p. $185^{\circ} .{ }^{b b} 90 \%$ methanol. ${ }^{\text {cc }}$ Anal. Caled.: $\mathrm{Cl}, 17.03$. Found: $\mathrm{Cl}, 16.81$.
crude product from the previous step, 23.0 g ., and 250 ml . of 5% aqueous NaOH was treated as in the preparation of 8 above. The yield of 32, after recrystallization from water, was 8.5 g .

5-(4-Acetamidophenyl)-3-ureido-s-triazole (33). Method L.To a stirred solution of 14.0 g . (0.2 mole) of $85 \% \mathrm{KOH}$ in 45 ml . of water, 11.0 g . (0.13 mole) of dicyandiamide, and 55 ml . of acetone,
at 0 to 5°, was added gradually 20 g . of p-acetamidobenzoyl chloride. The mixture was kept for 18 hr . at room temperature, diluted with 300 ml . of water, filtered, and the filtrate was acidified with acetic acid. The solid was filtered and air dried to give 9.1 g. of material, m.p. $23 \overline{\mathrm{j}}-239^{\circ}$ dec. An analytical sample, recrystallized from 50% aqueous N, N-dimethylformamide, melted

Table II

RCONHNHCNH.

R	$\begin{aligned} & \text { Method } \\ & \text { of } \\ & \text { per }{ }^{\prime \prime n} . \end{aligned}$	erystn. solvert	Yielı,	AI.p., "C.
$p-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	0	${ }^{1}$	3)	$210-211$
$\left.p-\mathrm{H}_{4} \mathrm{NS} \mathrm{S}\right)_{6} \mathrm{C}_{6} \mathrm{H}_{4}$	P'	1	(1)	231-233 der.
$p-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{SO} \mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	O	1	N0	$219-2 \div 0$
$4,2-\mathrm{H}_{2} \mathrm{~N}(\mathrm{HO}) \mathrm{C}_{6} \mathrm{H}_{4}$	1	1,	$\because 4$	$2110-212$
2 -Pyridy	$1 '$	h	N0	197-199 der.
t-()nimaly	$1 '$	',	N0	184-1.s6 der.
2-Pyomzinyl	I^{\prime}	b	9.5	$22-23$ der.
" (9) ¢ athemol.	itter.			

at $250-252^{\circ}$ dec. Anal. Calcd. for $C_{11} \mathrm{H}_{11} \mathrm{~N}_{0} \mathrm{O}_{2}: ~ N, 28.5 \overline{4}$ Fonnd: $工, 28.19$.$) . The crude product from the previous step$ $(9.0 \mathrm{~g}), 200 \mathrm{ml}$. of 95% ethanol, and 2.5 ml . of 85% hydrazine hydiate were reflixed for 4 hr. and cooled, and the solid was filtered. The air-dried material, 5.6 g ., was recrystallized from armeon- N, N-dimethylformanide ta give 4.5 g . of 33 . ${ }^{3}$

4-Amino-3,5-bis(2-furyl)-s-triazole (38). Method M.- Thte reaction bet ween 33.0 g . (0.15 mole) of 1,2 -bis (2 -furoyl) hydrazine and 15.0 g . (0.40 n nole) of 55% hydrazine hydrate by the literature procedure ${ }^{4}$ gave $\overline{5} . \overline{\mathrm{g}} \mathrm{g}$. of 38 .

N -(3,5-Di-4-pyridyl-s-triazol-4-yl)isonicotinamide Dihydrochloride (40). Method N.--T", 20.0 g. (0.084 mole) of 39 in 100 ml. of pridine at $0-5^{\circ}$, was atded in portions 17.8 g . (0.1 mole) of smblimed isonicotinyl rhloride hydrochloride. The raction minture was stired for 18 lir. at room temperature, lacated lom '? lir. an the stemm bath, coled, and treated with $2 \overline{5} 0$
(3) 1). W. Laiser and (S. A. Peters |./. Org. Chem. 18, 190) (1903)] have
 di: mot mepare 33.

 totradius, hat not includine Pimner's compoculd, wien so treated gave teiazoles. Honee, li. Ki, heistein ("Handbuch der organiselben Chemie,"

ml. of ice water. The precipitated solid was filtered and dried to give 8.0 g . of 39 . To the filtrate was added 20 ml , of concentrated aqueons NH_{3} and the solution was soncentrated to dryness in vacuo. The residue was dissolved in 600 ml . of boiling absolite ethanol and allowed to cool to roonn temperature, the $\mathrm{NH}_{4} \mathrm{Cl}$ was filtered, the filtrate was concentrated to 200 ml . and again filtered, and the filtrate was dilnted with 400 ml . of hexanc. The solid which separated was filtered and dried to give 9.3 g . (32 \% vield) of ernde base, m.p. $267-268^{\circ}$ dec., but this componnd could not be purified by recrystallization.

To the base, 6.9 g . (0.02 mole) in 150 ml . of absolnte ethanol. was added 0.062 mole of HCl in ether solution. The crvstalline product was filtered and recrystallized from 00 ecthethol ta give 6.2 g . of 40 .

1-(p-Acetoxybenzoyl)-3-thiosemicarbazide. Method O. Ta 2.30 g . in. 25 mole) of powdered senicarbazide and 40 ml . of prridine, with ire-water cooling, was added dropwise 49.6 g . (0.25 mole) of p-acetoxybenzoyl chloride in 50 ml . of dry benzene. The mixture was stirred for 4 lir. at room temperature and dilnted with 200 ml . of water, and the oily solid was filtered. Recrystalli\%ation from 95 , ithanol gave 14.5 g . of product.

1-(p-Sulfamoylbenzoyl)-3-thiosemicarbazide. Method P...-A minture of 21.5 g . (0.1 mole) of p-sulfamovibenzoyl hydrazide, - .1 g . (0.1 mole) of dry ammoniunt thiocyanate, and $\$.6 \mathrm{~g}$. of conrentrated HCl in 90 ml . of water was leated on the steam hath for 16 hr. and then cooled; the solid was filtered and air dried ta give 26 g . of prodhet.

Iodinated 5- and 8-Hydroxyisoquinolines as Potential Amebicides

l. Schenter, R. A. Schyidt, W. Lemgreber, and A. Bronsi
Department of Chembal hewearch. Reserurch Dirision. Hoffmann-Ia Roche Inc., Jatlell, Jew Jeqself

Received Jaly 30 , 1:105

Abstract

 inftro and in vivo in comparison with Vioform. With the exception of 5,7 -diodo- 8 -isoquinolinol (III) and $\overline{5}$-iodo-S-isogninolinal (YII), which were weakly active when tested in ritro against Endamoeba histolytica, none of the substances showed antianebic activity at the dose employed.

Variour iodinated 8-hydroxyquinoliner such as Diiodoquin (I) and Vioform (II) are frequently used in the prophylactic and therapeutic treatment of intestinal munchiasis. We wish to report the synthesis of the isomeric isoquinoline analogs III and IV of Diiodoquin and the results of the evaluation of their antiamebic properties.

III

IV

8-Isoquinolinol (VIII) is of potential interest as a starting material for the synthesis of 5.7 -diodo-8isoquinolinol (III). This compound has been described by Robinson, ${ }^{1}$ who prepared it in an overall yield of 15% by sulfonation of isoquinoline at 300° followed by alkali fusion of the resulting sulfonic arid mixture. Since the structure of VIII had been assigned solely on the basis of nonidentity with $\overline{5}-$, ($6-$. and 7 -hydroxyisoquinoline, we decided to refrain from the use of Robinson's method for the preparation of this compound and, instead, utilized the p-aminophenol V in the synthesis of III (Scheme I). The diazonium

[^0]: (2) These reactants were reported by J. Bernstein, H. L. Yale, K. Losee, M. Holsing, J. Martin, and W. A. Lott [J. Am. Clem. Soc., 73, 906 (1951)| to yield 1-(p-aminobenzoyl)-3-thiosemicarbazide. The compound was, in fact, an unusually stable monohydrate of 9 , since drying at 137° in cacuo Was required to obtain anhydrous 9. The authors are grateful to Dr. İ. Hoggarth of Imperial Chemicals Industries for first calling their attention to the correct structure.

